👨🏻💻 Projective Geometry: Estimating the homography matrix
Table of Contents 1. Introduction 2. Via geometric features 2.1. From points/lines 2.1.1. Problem formulation 2.1.2. Noise amplification: the horizon line 2.1.3. Solution: least squares estimator 2.2. From conics 2.3. From multiple features 3. Via a pair images 4. Via ML model 5. Summary 6. References 1. Introduction So far, we have figured out how to: Mathematically characterize the transform between the 3D world and a 2D image of it Map different types of objects between the two domains However, one might wonder: how do we actually compute the homography matrix that fully describes that transform in the first place?...